YAG-OSDL Homepage

Organisation: Copyright (C) 2004-2022 Olivier Boudeville
Contact: about (dash) yag-osdl (at) esperide (dot) com
Creation date: Sunday, August 17, 2008

Lastly updated: Wednesday, March 23, 2022

Status: Stable

Version: 1.1.8

Dedication: Users of the YAG-0SDL tool.

Abstract: The role of YAG-OSDL is to generate static HTML gal-
leries out of a filesystem tree containing snapshots (camera pic-
tures). See this website for an example of YAG-OSDL in action.
Browsing this content can be done according to the tree struc-
ture (per gallery, through which one can navigate and that
can be nested, each with subgalleries containing thumbnails)
or based on themes that themselves form a separate hierarchy
(any theme may be further split into subthemes recursively).
Besides themes, a comment may be attached to a snapshot, and
will be displayed accordingly.

The next level of information is to read the corresponding source
files, which are intensely commented and generally straightfor-
ward.

http://snake.esperide.org/yag-osdl.html
https://osdl-data.esperide.org
https://github.com/Olivier-Boudeville/OSDL-Snake/yag
https://github.com/Olivier-Boudeville/OSDL-Snake/yag

Table of Contents

YAG-OSDL Homepage
Overview o
Purpose of YAG-OSDL
Installation
Inspirationo Lo
Step-by-step Mini User’s Guide
Objective
Step zero (optional): prepare the snapshots
Step one: install the YAG-OSDL tooling
Step two: edit your YAG-OSDL configuration file
Step three: annotate the images, thanks to our helper scripts
Step four: launch YAG-OSDL
Step five: admire the result 0L
Troubleshooting
Some thumbnails and/or snapshots are not properly oriented
UnicodeDecodeError when running YAG-OSDL
Dead links were spotted
Resetting YAG-OSDL’s action
Known Issues
Licence e
Support
Please React!

© © © 00 00 00 00 0000~ UL Ui b WWwwwhh o=

Overview

YAG-OSDL is a GPL’d cross-platform tool whose purpose is to generate a
static website from a set of image files stored in a directory tree, in order to
build a full web gallery allowing to browse the pictures pleasantly afterwards,
based on navigation options and thumbnails.

Hierarchical thematical sort and comments are supported; see an example
of result.

Purpose of YAG-OSDL

YAG-OSDL is made of a set of Python scripts that scan a directory tree con-
taining images (ex: JPEG files), and construct out of them a set of HTML pages
with thumbnails, offering the possibility to skim through the pictures thanks a
standard browser, and according to two different ways:

e in a tree-based fashion: the user can browse the images according to
their directory structure

e in a theme-based fashion: the user selects a theme and sees which are
its sub-themes and which resources belong to that theme (of course it
implies that the gallery author filled the theme information thanks to our
tools beforehand)

http://osdl-data.esperide.org
http://osdl-data.esperide.org

Gallery authors are indeed provided with a way of adding their comments
for any picture, and also with a way of describing to which theme(s) a given
picture belongs.

YAG-OSDL can be easily customised, thanks to its configuration file, whose
default name is yag-osdl.conf. Everything can be generated, the portal page
included, with comments and terms of use. Web themes ("skins" for galleries,
not to be confused with content themes) are supported, and can be customised
thanks to CSS (Cascading Style Sheets).

We developed YAG-OSDL as we needed a tool that would archive our graph-
ical resources so that we could browse quickly through them, either for holiday
pictures or to select the assets suitable for, say, a video game: another way of
describing YAG-OSDL is indeed: "a media content browser". We plan to add
archiving support for audio content, as soon as we feel enough need for such a
feature.

Installation

Current version of YAG-OSDL is 0.8. It relies on Python 3 (ex: 3.9.2 at the time
of this writing) and uses a pretty standard requirements.txt file in order to
secure its third-party prerequisites thanks to pip. The only extra prerequisite
is Ceylan-Snake.

Inspiration

YAG-OSDL derives from YAG, a previous work from Stas Z (linuxisbeter
(at) yahoo (dot) com); thanks!

Step-by-step Mini User’s Guide
Objective

You have a directory tree (possibly only a directory, preferably a pre-sorted
tree) of image files, such as:

MySnapshots
| -- GoldWashing
| |-- 200407-Chilhac-0096. jpeg
[|-- 200407-Chilhac-0099.jpeg
| |-- 200407-Chilhac-0103. jpeg
| |-- 200407-Chilhac-0113. jpeg
| |-- 200407-Chilhac-0114.jpeg
| |-- 200407-Chilhac-0115. jpeg
| |-- 200407-Chilhac-0116. jpeg
| ¢-- 200407-Chilhac-0117.jpeg
¢-- InsideVillage
|-~ 200407-Chilhac-0087.jpeg
|-~ 200407-Chilhac-0088. jpeg
| -- 200407-Chilhac-0089. jpeg
| -- 200407-Chilhac-0090. jpeg
¢__ 200407-Chilhac-0091. jpeg

https://github.com/Olivier-Boudeville/Ceylan-Snake/
http://home.planet.nl/~stas.linux/python/yag/

You want to generate a full web gallery out of it, and you are using GNU /Linux
(the Windows platform cannot benefit from helper shell scripts, which will ease
the work of the gallery author).

You might have relevant, overall (general) gallery information to associate
to this content; let’s suppose that you wrote them down in a text file (ex:
MyInfos.txt). If your gallery is to be put online, you might have thought to a
license and terms of use, that you would have written in another text file (ex:
MyLicence.txt).

Step zero (optional): prepare the snapshots

One may take advantage of the relevant scripts in Ceylan-Hull in order to better
manage pictures, namely to fix their filenames as a whole (see rename-snapshots. sh
for that) and to remove any associated metadata (typically EXIF informa-
tion) before publishing (not to disclose timestamps, locations, etc.), thanks to
remove-snapshot-metadata.sh.

One may then, once these metadata have been applied (images having been
made upright) and cleared, correct the orientation (as some camera mess with
them) of the remaining pictures that need it.

For that, one may use ImageMagick for that, precisely:

Counter-clockwise, in-place rotation:
$ mogrify -rotate "-90" foobar.jpeg

Step one: install the YAG-OSDL tooling

Python First, retrieve and install prerequisites, first of which is Python, pre-
cisely Python 3 (we use 3.9.2 at the time of this writing).

Most probably that your distribution allows to take care of it (example for
Arch Linux : pacman -Sy python3; users of Debian-based distributions can use
apt-get install python3).

Check your actual version with python -V.

Ceylan-Snake YAG-0SDL belongs to 0SDL-Snake, which relies on Ceylan-Snake.
This is just a matter of:

$ cd "/my-projects
$ git clone https://github.com/0Olivier-Boudeville/Ceylan-Snake

Set in your environment a CEYLAN_SNAKE variable pointing to that clone; ex:

$ export CEYLAN_SNAKE="${HOME}/my-projects/Ceylan-Snake"

YAG-OSDL itself Then obtain the YAG-OSDL codebase thanks to, for ex-
ample:

$ cd “/my-projects
$ git clone https://github.com/0Olivier-Boudeville/0SDL-Snake
$ cd 0SDL-Snake

Then the needed Python3 packages, which are listed in requirements.txt,
can be installed with:

https://hull.esperide.org/#for-snapshots-camera-pictures
http://python.org/download/
https://github.com/Olivier-Boudeville/OSDL-Snake/yag/requirements.txt

$ python3 -m pip install -r requirements.txt

This only involves installing actually Pillow (which supersedes PIL).

Step two: edit your YAG-OSDL configuration file

Simplest solution is to derive it from the sample one:
$ cp yag-osdl.conf.sample yag-osdl-for-foobar.conf

We hope that this sample is self-describing enough for most uses; yours could
be edited that way:

[Options]

Now can be mostly any string:
project_name = Moon Photos

One may prefer absolute paths for simpler management.

content_directory = /var/my-encrypted-storage/www/Moon-sources
#resource_directory = /home/dalton/Projects/Tools/yag/yag-osdl-latest/resources

output_in_content = False
output_directory = /var/my-encrypted-storage/www/Moon

#language = English
language = French

#theme = 0SDL-english-theme
theme = 0OSDL-french-theme

thumbsize = 120
images_by_row = 4
images_by_column = 4
dash_is_space_in_menu = True

author = William Dalton
author_mail = william.dalton@maverick.org

Step three: annotate the images, thanks to our helper scripts

To Trigger the Annotation Process If we launch YAG-OSDL now, a full
gallery will be generated, yet no comment nor theme information will be avail-
able.

If one wants to provide them, just enter, for example, from the OSDL-Snake
root:

Target your content root:
$./annotate-images.sh /var/my-encrypted-storage/www/Moon-sources

https://github.com/Olivier-Boudeville/OSDL-Snake/blob/master/yag/yag-osdl.conf.sample

We hereby suppose that two really common tools are available on your com-
puter:

e a text editor, emacs or any that you like; just define the EDITOR environ-
ment variable accordingly (ex: export EDITOR=vim) to override

e an image viewer; various ones will be looked-up; to select a particular one,
just define the IMAGE_VIEWER environment variable accordingly

Commenting Galleries & Images The annotate-images.sh script (which
uses handle-image.sh) will guide you and will trigger the appropriate tools.

That is, it will first fire a text editor for each encountered gallery when
scanning your content tree, in order that, if wanted, you can comment any of
them.

Note

Each time a text will be requested from the YAG-OSDL user, the
spawned editor will start with an explanatory placeholder that begins
with the # character.

It can be safely replaced by actual information, knowing that YAG-
OSDL will ignore all lines starting with # afterwards.

In the specific case of comments, their text may include (well-formed)
HTML mark-up.

On the example above, it would be first MySnapshots, then GoldWashing,
and then InsideVillage. In each of the corresponding files, feel free to give
overall information relative to the content in that gallery directory.

After this gallery-commenting phase, the next phase will be the per-content
commenting. Indeed, for each image in the content tree, annotate-images.sh
will launch the specified image viewer to display that picture (so that you are
reminded of it), and then a first text editor is fired, where you may enter any
comments' you may have regarding that content.

When this comment writing is over, closing the text editor will trigger a new
instance of it, as explained in the section.

Adding Thematical Information This time, the theme information? (if
any) associated to this image is to be specified.

Per-Content Themes How to tell that your image belongs to themes
Surf and Hawai, and that the theme Surf is a sub-theme of the Awful activities
theme? Simply, in the spawned theme file, enter on the first line: Awful
activities: Surf and in the second Hawaii. That’s it, YAG-OSDL has all
the information that it needs in order to perform its sorting work.

You can therefore close the image window (you have finished with that one)
and this theme file, and repeat the process:

1. view the current image

1The files dedicated to comments bear the .txt extension.

2The files dedicated to themes bear the .thm extension.

https://github.com/Olivier-Boudeville/OSDL-Snake/blob/master/yag/annotate-images.sh
https://github.com/Olivier-Boudeville/OSDL-Snake/blob/master/yag/handle-image.sh

2. enter its comment (if any) and close the text editor

3. enter its theme information (if any), close the image viewer and
the text editor (preferably in that order)

4. repeat from point 1 until annotate-images.sh stops with Annotations
finished !, which means that you went successfully through
the whole comment and thematical enrichment process

Note that you can at any time stop the annotation script, as no entered
information will be lost: by re-launching the script the same way that you
launched it, you will be able first to validate or update every already available
information you gave, until you reach the point where you stopped. You will
then just have to continue the enrichment process from then on.

Another Way of Defining the Theme Hierarchy There is an alter-
native or complementary method in order to define your theme tree: instead
of specifying the link between themes at the level of a given image®, a stan-
dalone theme file whose name is yag-overall-themes.thm can be used. This
file should be placed at the root of your content, and might have the usual
structure:

father-theme: a-child-theme
For example:

Awful activities: sailing
Awful activities: surf
Awful activities: yoga

surf: Hawaii-2003
surf: Hawaii-2004
surf: Snapshots 0f The Shark That Ate My Board

This standalone theme file proved useful, since, that way, all the theme tree
can be defined and understood in one place.

However, any combination of theme specifications will work: one can both
use image theme files and the standalone theme file.

Step four: launch YAG-OSDL

Still following the example, one just have to run:

$ run-yag-osdl.sh --config yag-osdl-for-foobar.conf

Step five: admire the result

Use your browser to inspect your stunning new gallery, improve comments and
themes if necessary and, if you feel like it should be put online, copy the whole
content directory to a webserver, add a link to the gallery main page and tell
all your friends about it!

3Knowing that a given father/child theme relationship can be specified only once, at the
level of any related content.

Troubleshooting
Some thumbnails and/or snapshots are not properly oriented

The corresponding original snapshots shall be rotated, refer to the orientation
section.

UnicodeDecodeError when running YAG-OSDL

Precisely:
UnicodeDecodeError: ’utf-8’ codec can’t decode byte Ox## in position P

This error happens as the various text files involved (ex: to describe themes,
to comment snapshots, etc.) shall contain UTF-8 Unicode text, otherwise pure
ASCII text (ex: not ISO-8859 text).

If needed, one may thus have to convert them, possibly thanks to our switch-
text-encoding.sh script, before running again YAG-OSDL.

For example:

$ find . -name ’*.txt’ -exec switch-text-encoding.sh ’{}’ utf-8 ’;’

Dead links were spotted

If they were not introduced by the user (typically through the comments), then
it is certainly abnormal. We regularly use third-party dead link checkers to
avoid that?.

Please report any confirmed issue with a diagnosis as precise as possible.

Resetting YAG-OSDL’s action

Unless output_in_content has been explicitly set to "True" in the configu-
ration file, the site has been generated in a separate tree that can be safely
removed as a whole.

Otherwise YAG-OSDL directly generated it in the content directory (pre-
sumably to avoid a duplication of that content that may be large). In this
case we recommend the use of the remove-yag-osdl-action.sh script (refer to its
--help option for that).

Known Issues

e when switching between a content-based or a theme-based browsing (typ-
ically through the left menu), on Firefox a white transition flashes once;
not a big issue

4Note that at least some of them (ex: this one) seem to possibly report erroneous false
positives when applied to websites generated by YAG-OSDL (404 errors reported, whereas
corresponding content is available,and other checkers agree). So we tend to prefer for example
this service.

https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/switch-text-encoding.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/switch-text-encoding.sh
`https://github.com/Olivier-Boudeville/OSDL-Snake/blob/master/yag/remove-yag-osdl-action.sh
https://www.deadlinkchecker.com
https://www.brokenlinkcheck.com

Licence

The one of the original work applies, namely the GNU General Public License
(GPL), version 3.0 or later.

Support

Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported (please specify it relates to YAG-OSDL) to the project interface (typi-
cally issues) or directly at the email address mentioned at the beginning of this
document.

Please React!

If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Have fun with YAG-OSDL!

http://www.gnu.org/licenses/gpl-3.0.html
https://github.com/Olivier-Boudeville/OSDL-Snake
https://github.com/Olivier-Boudeville/OSDL-Snake/issues

	YAG-OSDL Homepage
	Table of Contents
	Overview
	Purpose of YAG-OSDL
	Installation
	Inspiration
	Step-by-step Mini User's Guide
	Objective
	Step zero (optional): prepare the snapshots
	Step one: install the YAG-OSDL tooling
	Step two: edit your YAG-OSDL configuration file
	Step three: annotate the images, thanks to our helper scripts
	Step four: launch YAG-OSDL
	Step five: admire the result

	Troubleshooting
	Some thumbnails and/or snapshots are not properly oriented
	UnicodeDecodeError when running YAG-OSDL
	Dead links were spotted
	Resetting YAG-OSDL's action

	Known Issues
	Licence
	Support
	Please React!

